ADASAD域控制器及芯片平台分析
1.
ADAS/AD概述
智能化是实现汽车作为人们第三生活空间这一目标的重要技术路径,当前汽车智能化主要有两大发展方向:驾驶自动化和座舱智能化。自动驾驶(ADAS/AD)的使命是将人的脚(纵向控制)、手(横向控制)、眼(感知)和脑(决策)等从驾驶任务中解放出来。人的精力被释放出来后,进一步促进了人在汽车内办公、休闲和娱乐的需求,这些需求推动了汽车座舱的数字化、信息化以及新兴的人机交互模式等技术的蓬勃发展,这也就是“智能座舱(IntelligentCockpit)”技术。
目前自动驾驶技术在全球范围内已经进入快速发展期。随着搭载L1/L2级别ADAS功能的汽车进入大规模量产,L1/L2级别ADAS功能的市场渗透率将快速提升。而L3/L4级别自动驾驶系统仍处于小规模原型测试阶段。当今的自动驾驶行业,中国市场绝对是主力。今年中国L2的搭载量预计突破80万,中国品牌占据绝大部分份额。
ADAS功能市场渗透率的快速提升来自几个方面的驱动力:
1.ADAS相关的软硬件技术越来越成熟和稳定,成本也越来越低。比如:毫米波雷达跟五年前相比下降了超过50%。
2.一些基本的ADAS功能(比如:自动紧急刹车AEB)被纳入到了各国的汽车评测体系(比如:C-NCAP)中,这在客观上极大的推动了这些ADAS功能的普及。
3.中低端车竞争加剧,ADAS功能可以有效地提升品牌的科技感和驾车体验,造成主流合资品牌和自主品牌的重点车型甚至超过了一些国际上的高端品牌。
未来中国市场ADAS功能的渗透率还将持续快速提高,中低端汽车所配置的ADAS功能将逐步增多。根据艾瑞咨询研究报告显示,预计年ADAS功能在乘用车市场可以达到65%左右的渗透率。L3级别的高速自动领航HWP功能和L4级别的AVP自动泊车功能,目前车型渗透率较低,未来提升空间较大。
图3-1ADAS功能市场渗透率预测
1.1ADAS/AD功能汇总
目前行业内的ADAS系统实现了很多辅助驾驶的功能,总体上这些功能按照用途可以分为这么几类:主动安全功能、舒适性辅助驾驶功能、泊车辅助功能和监督/无监督自动驾驶功能等。
通常,L0-L2级自动驾驶,习惯用ADAS表征;L2+级自动驾驶,用ADAS/AD表征,以示过渡;L3-L4级自动驾驶,用AD表征。
1.2ADAS/AD系统架构
智能驾驶系统本质上就是要解决三个问题:1)我在哪?2)我去哪?3)我该如何去?基于这样一个系统模型,典型的智能驾驶系统或者自动驾驶系统通常由三部分组成:
1.环境感知:感知系统依靠各种传感器(包括:摄像头、毫米波雷达、超声波雷达、激光雷达、高精地图/IMU/GPS等)来获取汽车所处环境信息和周边车辆、行人、交通信号灯和路标等信息,为汽车的综合决策提供数据支撑,解决“我在哪”的核心问题。
2.决策规划:通过环境感知的结果进行数据融合,结合高精地图数据确定合适的工作模型,决定相应的轨迹规划方案,以达到替代人类作出驾驶决策的目的,将智能汽车以拟人化的方式融入整个交通流当中,解决“我去哪”的核心问题。
3.控制执行:也就是对一个具体的最小决策规划结果的实际执行,从而达到规划的目的。具体在车上,通常体现为通过各种控制理论和算法来控制车辆的驱动、制动和转向系统,从而实现车辆的横向及纵向控制,使汽车精准地按照决策规划实现有效的避让、减速、车距保持、转向等动作,解决“我该如何去”的核心问题。
图3-2典型自动驾驶系统的系统模型
2.
ADAS/AD感知系统
自动驾驶的感知系统其实包括:环境感知、车辆自身状态感知以及车辆定位等几大模块。传感器是车辆感知系统收集环境信息、车辆自身状态信息和位置信息等的重要手段。自动驾驶车辆所配备的传感器可以分为三类:
车辆自身状态感知传感器(简称:自感知传感器):自感知使用本体感应传感器来测量车辆的当前状态,包括:车辆的速度、加速度、横摆和转向角等。本体感应西西里通常使用预先安装的测量单元来获取信息,比如:里程表、惯性测量单元(IMU)、陀螺仪(Gyroscopes)和来自控制器局域网(CAN)总线的信息。
定位传感器(Localization):定位传感器使用GPS等外部传感器(ExteroceptiveSensor)或惯性测量单元读数的航位推算进行定位,可以确定车辆的全球和本地位置。车辆高精度定位通常会基于多个传感器信息的组合来进行,比如:GPS、IMU、里程表和摄像头等。对多个传感器的数据融合可以最大限度减少单个传感器的局限性和缺点,提高定位的精度和可靠性。
环境感知传感器(Surrounding-sensing):环境感知传感器主要有摄像头、超声波雷达、毫米波雷达和激光雷达等四种。
环境感知系统依靠这些环境感知传感器来采集车辆所处环境信息数据,并对其进行一些列的计算和处理,从而对周围环境进行精确建模,其输出结果是一个环境模型。所谓环境模型是指车辆外部物理世界的数字表示,它包括道路、要避开的物体(比如:其它车辆、易受伤害的道路使用者等)以及可驾驶的“自由空间(Freespace)“的表示。
不同传感器特点各异
不同的传感器由于其工作原理不同,因此具有不同的特性。主机厂为了保证ADAS感知系统的冗余和鲁棒性,通常会采取多种传感器融合的配置方案。下表总结了ADAS系统中常见的各类传感器的特点:
2.1ADAS系统传感器布局方案
主流的ADAS系统从L0级别发展到目前的L2+级别,技术方案已经发生了巨大的变化,从早起的分布式智能传感器方案演变到现在基于ADAS域控制器的ADAS域集中式方案。相应的传感器布局也有了很大的变化。
下面是常见的一些ADAS传感器布局中的术语简称:
FCM:FrontCameraModule,前视摄像头总成,有单目(Mono)、双目(Stereo)、双焦(Bi-Focals)和三焦(Tri-Focals)4种形态。
FCR:FrontCentralRadar,前雷达模块,有MRR(中距,Mid-RangeRadar)和LRR(长距,Long-RangeRadar)2种形态。一般1R1V方案(后续会详细解释该方案)中常选择MRR作为前雷达模块,5R1V方案中,常选择LRR作为前雷达。
SRRs:Side-RearRadars,侧后雷达模块(左、右,一般左master右slave),有SRR(短距Short-RangeRadar)和MRR(中距Mid-RangeRadar)2种形态;SRR常为24G毫米波,MRR常为77-79G毫米波。这里SRR缩写就有两个含义,可能是指侧后雷达模块,也可能是指短距离毫米波雷达,因此加s区分侧后雷达模块(SRRs)。
USS:UltraSonicSensor,超声波雷达传感器。
早期的L0-L2级别的ADAS系统是由几个互相独立的子系统组成的,每个子系统实现相应独立的ADAS功能,因此也称为分布式的ADAS系统方案。
图3-3早期的L0-L2级别的ADAS系统实现方案
前向ADAS系统:一般由单FCR,或者单FCM组成;当前主流配置是FCR+FCM组成的1R1V方案,能够支持到TJA/ICA的L2ADAS(单车道驾驶辅助)。后续伴随视觉检测能力的提高,在L0-L2级ADAS/AD定位的车型上,有向单FCM发展趋势,因为车道线等横向控制所需感知信息,只有视觉能提供;省掉雷达能降低系统成本。
侧后ADAS系统。一般由侧后方两个SRRs组成,实现大部分侧后向ADAS功能。
自动泊车系统。即泊车控制器+12颗超声波传感器(USS)组成的APA(自动泊车辅助)系统;实现功能主要是APA和FAPA等。
全景环视系统。即由全景环视控制器(实际现在该控制器目前已很少见,该零部件实体已经被吸收合并到其他控制器节点上了;主要由车机、泊车控制器或者域控制器所取代)+四个鱼眼摄像头组成。实现AVM功能(AroundViewMonitoring,环视监控)。
其中,前两个系统常称之为行车ADAS系统(DrivingADASSystem),有时候这种行车ADAS方案也常被称作3R1V方案,3Radar1Vision方案;后两个常称之为泊车ADAS系统(ParkingADASSystem)。
到L2+级别的ADAS系统,集成度更高、性能更强大的ADAS域控制器整合了原来分散的ADAS子系统,原本分散系统所独占的传感器数据可以被多个ADAS功能所复用。
L2+级别的ADAS系统主要有两大类:1)多雷达域集中式方案,主要是5雷达方案,常见的有5R1V、5R2V、5R5V等方案;2)多视觉的域集中式方案,是指基于多雷达方案的继续演进,形成多视觉感知+雷达冗余感知的系统,比如5R12V方案。
下图是L2+级别ADAS/AD系统最大化的传感器架构方案——5R-12V-12USS方案。这个传感器布局架构的上限就是“坚决不上激光雷达”。只要上了激光雷达(一般是前向激光雷达),就到了L3级AD系统的传感器架构;
图3-4L2+级别ADAS系统的终极传感器布局架构
前视主摄像头(MainCamera,x1):主摄像头在L0-L2阶段对应FCM总成,即单目前视方案;在L2+域控方案中,作为dummyCamera,采用LVDS与域控制器连接。常见的HFOV(水平视场角,HorizontalFieldOfView)主要有30°-50°-60°-°-°等核心设计值,一般较为圆整化。实际工程实现值,会根据具体光学镜头的不同,有48°/52°(设计值50°)、28°(设计值30°)等规格。摄像头色彩矩阵(Patten)通常为RCCB或RCCC,有向RYYCy发展的趋势。RYYCy没有Clear,色彩信息未丢失,可以保证色彩还原性能。检测距离-米。
前视窄角摄像头(NarrowCamera,x1):30°左右的前视摄像头,用来观察红绿灯/车辆/行人等关键目标。一般与前视主摄像头会采用相同的图像传感器(比如同为1.3MP,或同为2MP,甚至同为8MP的Imagesensor),缩小FOV后,像素密度变大,检测距离相对MainCamera更远;Patten常为RCCB或RCCC。检测距离米。
前视广角摄像头(WideCamera,x1):HFOV约°,类似特斯拉的三焦视摄像头中的广角摄像头。在上了8MP摄像头后,MainCamera的FOV都能达到°了,WideCamera可能就不需要了。
侧前(左右两颗)摄像头(CornerCamera,x2):HFOV约70°-80°,后续会升级到约°;类似特斯拉的B柱摄像头,向侧前方看,主要
转载请注明:http://www.abuoumao.com/hyfz/1584.html